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Abstract. The fluctuations of the maximum Lyapunov exponent of a product of random 
matrices are studied analytically and numerically. It is shown that they may be expressed 
as a sum of two terms, one related to the order of matrices within the product, the other 
to fluctuations of the number of matrices of a given type. This result is then applied to 
the one-dimensional random-field king model and the discrete Schrodinger equation with 
a random potential. 

The Lyapunov characteristic exponents are very useful for characterising the properties 
of dynamical as well as disordered systems. Their significance becomes especially 
transparent in the transfer matrix formalism. In spin systems, for example, the 
maximum Lyapunov exponent is related to the free energy; for the Schrodinger equation 
in a random potential, the minimum non-negative Lyapunov exponent is the inverse 
localisation length [ 1,2]. 

The purpose of this paper is to discuss the problem of finite-volume (for disordered 
systems) or finite-time (for dynamical systems) fluctuations of the Lyapunov exponent 
[3-51. It will be shown that these are made up of two terms: one related to the ordering 
of the matrices within the product, the other to the fluctuations of the number of each 
type. This result will then be applied to two cases of physical interest, namely the 
one-dimensional Ising model in a random magnetic field and the one-dimensional 
discrete Schrodinger equation in a random potential. 

Let us recall some basic definitions to set notation and terminology. The maximum 
Lyapunov characteristic exponent (LCE in the following) or a product of N, d x d, 
independent random matrices Mi is defined through the following relations: 

N 

G N = n  Mi 
i = l  

where z(0) is a generic vector in Rd.  The LCE is a non-random quantity, in the sense 
that it does not depend on the particular realisation of G N  [ 6 ] .  Nevertheless, it is 
subject to finite-N fluctuations around its asymptotic value. The probability PN ( y )  d y, 
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that the effective Lyapunov exponent, for a system of size N, assumes a value between 
y and y + dy, may be reconstructed through the ‘generalised Lyapunov exponents’ 
~ $ 7 1 :  

where the average is taken over all possible realisations of G N .  From standard 
probability theory L( Q)/ Q is a non-decreasing function of Q. We will deal with two 
‘ensembles’ in the following, the canonical, where the number of each type of matrices 
is allowed to vary and the microcanonical, denoted by ( where it is kept fixed. Let 
us stress that the LCE is the same in both ensembles since, for almost all realisations, 
there is a unique limit of (1) [ 6 ] .  This is not true for the moments as one can easily 
check in the case of a product of commuting random variables. 

From now on we consider Bernoulli trials, i.e. M, = A with probability p and M ,  = B 
with probability q = 1 - p .  However, everything may be extended to more complicated 
cases. 

We have recently estimated the LCE in this case [8] by computing the so-called 
annealed average (GN)M in the microcanonical ensemble. In fact, by the binomial 
formula, one sees that 

since the derivatives kill the realisations with too many As and taking x = 0 kills those 
with too many Bs. Cauchy’s theorem leads to 

where l ( x )  is the largest eigenvalue of the matrix A + xB, D ( x )  is a d x d matrix, whose 
elements are O( 1) and r is a contour in the complex plane around z = 0. In the large-N 
limit the integral may be evaluated by the saddle point method 

(5) 
where f =  I ( ? )  refers to the saddle point z = 2, solution of 

- 
(GN)M = exp N [ p  ln p +  q In q +In 1 - q In 21 

- d In l ( z )  
dz - 4. z 

We can thus estimate the LCE by the microcanonical annealed average: 

i ( 1 )  = Re(p l n p + q  in q+ ln  f - q  In 2) (7) 
which has been found to work quite well in many cases [8] (beyond the trivial one of 
commuting or upper (lower) triangular matrices A and B, where one has i(1) = A ) .  
We must stress that i(1) is different from L(1) defined by (2) if the matrix Mi has 
some negative elements. i( 1) can be larger or smaller than A, while L( 1) 3 A. It is 
also possible to calculate the other (integer) moments ( G $ ) M  by noting [9] that 

where MpQ = M, 0. . .0 M, ( Q  times the usual tensor product). This allows us to use 
the same trick, equation (3), replacing A and B with AoQ, l?” respectively. The 
computation is quite non-trivial but may still be carried through. 
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It is now possible to expand the generalised Lyapunov exponents in Taylor series 
around Q = 0 

where p (called the 'non-uniformity factor' ( N U F )  in [3]) is given by 

Let us now derive a simple formula for computing p. In the microcanonical ensemble 
we can also introduce a new set of generalised Lyapunov exponents 

where p* is the variance due to matrix ordering in GN at fixed number, fTJ, of type-A 
matrices. The two ensembles are related through standard arguments of statistical 
mechanics so that for any given p :  

where PN( f )  is the probability that, in a product GN, there are frv type-A matrices. 
It may be approximated by a Gaussian, 9 , ( f ) = e x p - N ( f - p ) 2 / ( 2 u 2 ) ,  for large N 
and in the absence of correlations. Calculating the above integral by the saddle point 
method, we can relate LT(Q) to L ( Q )  within the canonical ensemble: 

where, in our case, U is the variance of the binomial distribution, 
small Q, we obtain for the frequency f that realises the maximum 

(13) 

and the generalised exponents 

This leads to an explicit formula for p :  

U' = p (  1 - p ) .  For 
in (13): 

f = P  

(14) 

If the microcanonical fluctuations are absent, then ( p *  = 0) and the microcanonical 
estimates give the exact results for both A and p. Otherwise a rough estimate of p* 
is provided by an analytical calculation of L*(2) - 2 i (  I ) ,  via the microcanonical trick. 
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We have explicitly carried out the above computations in the case of the random-field 
Ising model and the discrete Schrodinger equation in a random potential and compared 
them with numerical simulations. 

The model is defined through the Hamiltonian 

where hi = h with probability p and hi = 0 otherwise. The transfer matrix may be 
defined in the following way [ 11: 

T, = exp P [ J U ~ ~ + ~  + hiail 

where E = e-2PJ, zi = The non-trivial contribution to the free energy per spin, 
i.e. Lyapunov exponent, is given by the product of matrices that may take one of two 
possible forms 

with probability p and 1 - p  = q respectively. Here z = e-2ph and J = 1 (ferromagnetic 
case). We have rescaled the variables so that the two values of the field are h and 
zero. The independent parameters are the temperature, the magnetic field and the 
value of p .  

The explicit calculation proceeds as follows: we calculate the eigenvalues of the 
matrix A + xB;  this involves solving a quadratic equation. These are then input for 
the saddle-point equation (6), which ends up as a fourth-order algebraic equation. 
This may be easily solved by standard numerical techniques, or analytically. We thus 
arrive at four possible candidates for f and, consequently, for i( 1 )  = L*( l ) ,  since these 
matrices have positive elements. Since the eigenvalue of ( G N ) M  is related to the free 
energy, it must be real, which leads to a unique answer. As regards L*(2) ,  the 
computation is slightly more involved. Within the microcanonical ensemble, one must 
first find the eigenvalues of the 4 x 4 matrix A@ A + x B O  B, i.e. solve a fourth-order 
equation. This may actually be done analytically, since it is found that the characteristic 
polynomial factors into a linear and a cubic piece (this factorisation is a general 
property of the characteristic polynomial of direct products of matrices, according to 
which the computation of the roots of the dO-degree polynomial of a direct product 
of Q matrices reduces to that of a polynomial or order Q + 1 ;  in our case, this reduction 
leads from a fourth-degree to a cubic polynomial [9, lo]). This was realised with the 
aid of an algebraic manipulation program. The saddle-point equation ( 6 )  is then set 
up. Care must be taken to find (numerically) the correct saddle point in the complex 
plane, since it appears that the number of ‘spurious’ ones is quite large. 

Within the canonical ensemble, on the other hand, calculating L ( 2 )  is much 
simpler [9]: 

L(2)  =ln(max eigenvalue ( p A O A + ( l  - p ) B O B ) ) .  (18) 
In figure 1 we compare i( 1) with A. We see that the agreement is very good, indicating 
that the principal source of fluctuations is the second term of (15). Indeed, we have 
checked that also L * ( 2 ) / 2  is very close to A.  The fact that the ordering fluctuations 
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Figure 1. i ( l )  (full curve) and A (+) against h for p =0.5 and E =0.2. 

are negligible is strengthened by figure 2, where we present a numerical calculation 
of p compared with an (analytical) calculation of p(1 - p ) ( d i (  l)/dp)*. Moreover, we 
have done a numerical calculation of the microcanonical variance p* and found that 
for a wide range of temperatures p* = 

We turn now to the Schrodinger equation in a random potential. The physical 
problem consists in the properties of the electronic wavefunctions in a one-dimensional 
lattice, on each site of which the potential V, is a random variable [ 1,2]. We consider 
the case of a binary alloy, i.e. VI = V, with probability p ,  and V, = V, with probability 
q = 1 - p .  The Schrodinger equation has the standard form + V,$, = E$, 
and may be written in terms of transfer matrices as 

that is 0.1% of p. 

-2$, + 

where T may take two values 
* = ( E - 7 + 2  -1) B = ( E - V , + + 2  - 1  

0 1 0 

P 
Figure 2. Variance p (+) as a function of p for h =0.5 and E =0.2. The full curve is 
P(  1 - p)(d i( 1 ) ldp  )2 .  
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with probability p and 1 - p  = q respectively. Depending on the value of the energy 
E, the eigenvalues of these matrices are real or complex. They are complex within the 
range 

V, - 4 S E S V, or Vb-4S  E S  Vb. (20) 

Let us recall that the LCE is the inverse of the localisation length while the imaginary 
part of the logarithm of the eigenvalue of G ,  is related to the integrated density of states. 

In our calculations we have taken E = - 2 .  Figure 3 displays the exponents &I ) ,  
L * ( 2 ) / 2  (computed by the microcanonical trick) and A as a function of A V =  1.9- V,, 
for p = O S .  It is quite impressive that i ( l )  approximates A pretty well, although the 
variance p is very large ( p  = A ) .  

We investigated in detail the most unfavourable case of figure 3, i.e. Vb = 0. In 
figure 4, we show i( 1) and L * ( 2 ) / 2  compared with A, as function of p .  In figure 5 we 
present p and p* in the same case. We notice that the microcanonical fluctuations 

0.4 

0.2 

0 1 2 3 

AI 
Figure 3. i ( l )  (full curve), L * ( 2 ) / 2  (broken curve) and A (+) against A V =  Vh-1.9,  for 
p = 0.5. 
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P 
Figure 4. i ( l )  (full curve) and L * ( 2 ) / 2  (broken curve) 
V, = 1.9 and V, = O .  

compared with A, against p ,  for 
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Figure 5. p ( 0 )  and p* ( + )  against p for Vu = 1.9 and V ,  = 0. The full curve is the sum 
of p*  and p ( l  -p)(dh/dp)’ .  We have drawn a broken curve interpolating the numerical 
values of @ *  only for clarity. 

give the leading contribution to p, in contrast to the Ising model. The full curve 
represents the sum of the numerical results for p* and p(1 -p)(dh/dp)’, which is in 
good agreement with the numerical values of p. 

To summarise, we have obtained an explicit expression for the fluctuations of the 
Lyapunov exponent around its asymptotic value within the microcanonical and canoni- 
cal ensembles and have used it to study two physically interesting cases, the random-field 
Ising ferromagnet and the discrete Schrodinger equation with a random potential, in 
one dimension. In  the first case the main contribution comes from the number 
fluctuations whereas, in the localisation problem, the ordering fluctuations seem to 
dominate. A fuller study of these issues will be reported elsewhere. 
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